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On the exact propagator beyond and at caustics 
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B r a d  
$ Departamento de Fisica, Universidade Federal do Paranl, Caixa Postal 19.081, 80.000 
Curitiba. B r a d  
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Abstract. We evaluate exactly the propagator beyond and at caustics for a harmonically 
bound electron subject to a constant magnetic field and a time-dependent electric field. 
Our new results are confirmed by investigating the classical paths joining two end-point 
positions. 

For a harmonically bound electron subject to a constant magnetic field B (along z 
direction) and a time-dependent electric field E (  t )  (in xy plane), the Lagrangian has 
the form 

with 
L(r ,  i, t )  = L&z, i, t ) +  LL(rL ,  i,, t )  

L , ~ (  z, z, t )  = $m( z2 - a2z2)  + eE,( t )  

L,( rL, i,, t )  = fm( i: - R’r: + w;,Jr,) + eE,( t )  - rL 

(1) 

(2) 

(3 1 
where w = e B / m  is the cyclotron frequency, R is the oscillator frequency, and rL and 
E , ( t )  denote, respectively, the component of r and E ( t )  perpendicular to B. The 
(2 x 2) matrix J is given by ( J 2  = -I, identity matrix) 

Both (2) and (3 )  are one-time quadratic Lagrangians, and their propagator can be 
evaluated exactly by using the Van Vleck (1928)-Pauli (1952) method. Jones and 
Papadopoulos (1971) carried out the calculations and obtained the propagator of 
Lagrangian (1) as 

K ( r ” ,  r’; T )  = KI,(z”, z’; T ) K , ( r T ,  r:; T) 
with 

(4) 
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and 

a2S,( r" r' * 1/2  

K,( r:, r:; T )  = (7 1 I det ( I' 'I) I) exp (i S,( r:, r:; T)) Ti h ar:ar: 

- m a '  imR' 
- (27rifi sin R'T) {2h sin R 'T  

+sin R'(t - t)r :  e-Jwr"/2] eJWr"EL( t )  dt  

for 0 < T < r / R ' .  Here we have assumed that a"= R 2 +  w2/4, T = t" -  t' and (r:, t') 
and (r;, t ' )  are the final and initial spacetime points. We have also defined 

for any variable B. 
However the propagator (4) obtained is only valid for 0 < T < T/R'. In this letter 

we have extended their results to the following cases: ( a )  beyond caustics, sin ll T # 0 
with R T >  r or sin R 'T  # 0 with Q 'T> r and ( b )  at caustics, sin R T =  0 or sin R 'T  = 0. 
Since the z coordinate can always be separated from ri (x and y )  coordinates, we can 
evaluate K,,(z", z ';  T) and KL(r:, r:; T) beyond and at caustics, independently. 

By extending the Feynman formula (Feynman and Hibbs 1965), Horviithy (1979) 
obtained the propagator of the harmonic oscillator by including the Maslov correction 
factor. His result has been generalised by Cheng (1984a) for the time-dependent forced 
harmonic oscillator. Thus we have 

with 

Ma =exp{-ir[l+2 ent(QT/r)J/4) 
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and 

Kll(z”, z’; T = k.rr/R) = exp(-ikr/2) exp [ ( z ”  I cos a( 2 ” -  [)E,( t )  d t  
t ” 

1’  

x S ( z ” -  z ;  - (-1)kz’) (k being a positive integer) 

with 

z ;=(e /mR)  sinn(t”- t )E,( t )  dt. It: 
Here ent(QT/?r) stands for the greatest integer which is less than or equal to RT/.rr. 

Following the idea of Levit and Smilansky (1977) by expanding the path variations 
in terms of the basis of the eigenfunctions in Morse’s boundary problem (Morse 1934), 
we then obtain from the Lagrangian (3) 

with the boundary conditions 

7; = 7); = 7); = 7; = 0 

for the path variations t)( t ) ,  which is defined as t)( t )  = r,( t )  - ryl( t ) ,  and ryl( t )  is the 
classical path connecting ( r ; ,  t‘) and ( ry ,  t”). It can easily find the eigenvalues of (9), 

A ‘ “ ’ =  m(nz.rr2/T2)[1 -(R‘T/n.rr)*] n = 1,2 , .  . . (10) 

which are double degenerate. By studying (10) carefully, the index of the classical 
path is 2ent(R’T/.rr). Here ent(R’T/?r) represents the greatest integer which is less 
than or equal to R’T/.rr. In other words, the Morse theory (Milnor 1963) can be used 
to present the phase of the propagator in terms of the number of focal points on the 
classical path between the initial and final positions. 

Hence we have 

with 

Mnc = exp{-irr[l+2ent(R’T/.rr)]/2} 

since the time-dependent electric field E,( t )  will not affect the frequency Cl’. Now we 
introduce the modified semi-group property of the propagator (Cheng 1984b) 

K,(rT, r ; ;  T = j r / f l ’ )  = exp ( -- ‘r) / K l ( r : ,  r,; t” -?) l lK , ( r , ,  r:; t - t ’ ) l  

xl‘; 
exp($S,(<:, r,; t “ - t ) S S , ( r , ,  r:; t - t ‘ ) ]  

-m -m 

j =  1,2, .  . . (12) 
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since the Maslov correction jumps in phase at every half-period at caustics. However, 
we should mention that in evaluating (12) one must choose t so that there exists one 
and only one classical path between the pair of spacetime points ( r i ,  t ' )  and (rl, r ) ,  
and ( rl, t )  and (r;, 2") considered. Choosing sZ'( t " -  t )  = ~ / 2  and carrying out the 
integration (12) with the help of ( l l ) ,  we arrive at 

K,( ry, r l ;  T =j.rr/a') 

after lengthy but straightforward calculations. Here we have set 

From the Lagrangian (3) ,  the equation of motion is of the form 

i l + w ~ i l + ~ 2 r l  = e E , ( t ) / m .  (14) 

The classical path of (14) can be written as 

rt'(t) = R,(t)+[sin a'("'- t )  e-'w"''2r~+sin O ' ( t -  t ' )  

e J w ( t " - 1 ) / 2  ( r :  - Rg)]/sin R'T 

where 

At caustics a 'T  = j,, (15) is invalid unless the following condition is satisfied: 

,.in al(ttt- t )  e-Ju(1-l ' ) /2  rl I + sin a'( t - t ' )  eJw("'-')/* (r:-R$)=O. (16) 

For our choice of t in integrating (12), (16) reduces to the conditions of the arguments 
of two-dimensional Dirac 8'2) appearing in (15) to vanish. In other words, there exists 
an infinite number of classical paths between the initial position ( r i ,  t ' )  and the final 
position (r: ,  t") .  For the case of a constant magnetic field only, (13) reduces to 

(17) 

(the factor 2 in (24) of Cheng (1984b) should be removed) as we expect. Finally, we 
are able to obtain the propagator of our dynamical system by combining only ( 5 )  or 
(7) or (8) with ( 6 )  or (11) or (13) for different cases. 

K,(  r:, r:; T = 2 j ~ /  w ) = exp(-ij.rr)S'2)( r: - r:) 
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